
Damn Vulnerable IOS Application Solutions 

http://damnvulnerableiosapp.com/ 

Runtime Manipulation – Login Method 2

As you may have noted by now, the solution for Login Method 1 doesn't work on Login Method 2. In 
order to figure out what must be going on, let's have a look at the class information for this application 
and check the methods for the view controller RuntimeManipulationDetailsVC 

We can safely assume that the method which gets called on tapping the button Login Method 2 is

 – (void)loginMethod2Tapped:(id)fp8

In order to understand what's happening in this method, we must analyze the application using GDB. 
So let's start GDB on our device . After starting GDB, make sure our application is running in 
foreground and attach to to it.



Then let's set a breakpoint for the method that gets called on tapping the button Jailbreak Test 2. You 
can set it by using the command b loginMethod2Tapped:

Now use the c command to continue the application. You will see that the application on the device will 
now begin responsive.

Now let's go ahead and tap on Login Method 2. We will see our breakpoint being hit. 

Let's disassemble the code. Use the disassemble command to see the disassembly.



We know that whenever an external method is called or a property is accessed, the objc_msgSend 
function is called. But there are thousands of objc_msgSend calls called in any application (including 
background objc_msgSend calls). We should only be concerned with the objc_msgSend calls related to 
this method. So let's find out the addresses of all the instructions that call objc_msgSend and set a 
breakpoint for it. A very simple way to do it is to look for the blx instruction, note its address and set a 
breakpoint for it. As you can see, I am noting down the addresses of all the blx instructions ....

 



And now let's set a breakpoint on all of them. 

Now let me continue by using the c command . As we move through every objc_msgSend instruction 
one by one, we will print out the values of registers and see if there is anything of interest. We are 
printing out the value of  r1 register with every objc_msgSend call here. If there is nothing of interest, 
we just type c to continue until the next breakpoint is hit.



We can see something of interest after a few breakpoints. As you can see, a comparison is made with a 
particular string as we can see the method call to isEqualToString:

Our task is to find out what string is the value being compared to. It could be the username or 
password. And if you are familiar with the basics of ARM and GDB, you will know that the first 
parameter goes inside the r2 register. If you don't understand this concept, I would recommend you 
read the article on ARM and GDB basics at http://highaltitudehacks.com/2013/11/08/ios-application-
security-part-21-arm-and-gdb-basics/

So let's print out the value of r2 register by using the command po $r2.

Oops, looks like there is some problem here ! Well, there has to be some other way of bypassing this 
login check. Let's look at the disassembly carefully again. What we know is that the value in the 
username and/or password text fields are compared with strings and if they are equal then the user is 
logged in. We can see this kind of disassembly twice in this code.



Please note that the address of these instructions may be different in your case.  

If you have a little bit of knowledge about ARM, you will note that the instruction tst stands for test  
whereas beq stands for branch if equal. Basically the test instruction performs a bitwise AND operation 
on the value in the first operand (r0 and r5 in our case) and the value of Operand2. The flow then 
branches to a particular address if the branch if equal returns a positive result, i.e if the values are 
equal.

Well, let's do a couple of things here.

a) Set a breakpoint before both the beq instructions.
b) Make sure the values in the register is set to 1 when these breakpoints are hit, this means setting r0 to 
1 in case of first instruction and setting r5 to 1 in case of the 2nd instruction. This might help us bypass 
the login check as we are returning true with both the comparisons being made in this method.

This is being demonstrated in the screenshot below.

And if we continue the app, we can see that we have successfully bypassed the authentication check.




