
Damn Vulnerable IOS Application Solutions
http://damnvulnerableiosapp.com/

Jailbreak Detection – Jailbreak Test 2

By now you must have figured out that the solution for Jailbreak Test 1 doesn't work on Jailbreak Test
2. So things are a bit complicated here. Let's look at the class information for this application. You can
find the class information for this application in the folder Other Files or you can just use class-dump
to dump out the information. After scrolling down a bit, we can see the method that gets called on
tapping the button Jailbreak Test 2

Let's start GDB on our device. After starting GDB, make sure the application is running on foreground
and attach to to it.

http://damnvulnerableiosapp.com/

Then let's set a breakpoint for the method that gets called on tapping the button Jailbreak Test 2. You
can set it by using the command b jailbreakTest2Tapped:

Now type the c command to continue the application. You will see that the application on the device
will now begin responsive.

Now let's go ahead and tap on Jailbreak Test 2. We will see our breakpoint being hit.

Let's disassemble the code. Use the disassemble command to see the disassembly.

We know that whenever an external method is called or a property is accessed, the objc_msgSend
function is called. But there are thousands of objc_msgSend calls called in any application. We should
only be concerned with the objc_msgSend calls related to this function. So we find out the addresses of
all the instructions that call objc_msgSend and set a breakpoint for it. A very simple way to do it is to
look for the blx instruction, note its address and set a breakpoint for it. A nice trick here would be to
note the blx instructions from the bottom, note their address, set a breakpoint for them and move
upward. This is because we can safely assume that the validation will end somewhere at the end of the
function and hence starting from the bottom would make more sense. This is however not guaranteed
but let's just do it as it may prove to be a more efficient way.

In this case, let me select the last 5 blx instructions

And set breakpoints for it.

Now let me continue by using the c command . As we move through every objc_msgSend instruction
one by one, we will print out the registers and see if there is anything of interest. We are printing out
the value of r1 register with every objc_msgSend call here. Then if there is nothing of interest, we just
type c to continue until the next breakpoint is hit.

Well, there is something of interest almost immediately. We can see a method with the name
showAlertForJailbreakTestIsJailbroken:. Let's not do anything with this and try to look up this
method in the class information file. On looking up this method in the class information file, we can see the full
prototype for this method.

This method accepts a Boolean parameter. Well, this is what we have been looking for. All we need to do is pass
the Bool parameter NO to this method. And if you are familiar with the basics of ARM and GDB, you will know
that the first parameter goes inside the r2 register. If you don't understand this concept, I would recommend you
read the article on ARM and GDB basics at http://highaltitudehacks.com/2013/11/08/ios-application-
security-part-21-arm-and-gdb-basics/

So let's just set the value of r2 to 0 (1 = YES and 0 = NO) and type c to continue. Also, let's skip all the
breakpoints after this by continuing.

As you can see on the device, it says “Device is Not Jailbroken” even though our device is jailbroken. We just
bypassed the check for a jailbroken device.

http://highaltitudehacks.com/2013/11/08/ios-application-security-part-21-arm-and-gdb-basics/
http://highaltitudehacks.com/2013/11/08/ios-application-security-part-21-arm-and-gdb-basics/

Many developers check for a jailbroken device in their application and disable the application if the device is
jailbroken. This is because critical applications are subject to risk if the device on which they run is jailbroken.
However, no technique for detecting a jailbroken device is foolproof and can be bypassed by using such
techniques.

