
Damn Vulnerable IOS Application Solutions
http://damnvulnerableiosapp.com/

Application Patching – Jailbreak Evasion

For this challenge, we will be fetching the application folder from the device, patching the binary and
installing the modified application back to the device. This is because we cannot test the check for a
jailbroken device on the simulator.

To copy the application folder for DVIA to your system, open iExplorer (make sure your device is
connected to your laptop), head over to your device, then the Apps section, select the DVIA App folder,
and right click on it to export it to your system.

The file exported will be named DamnVulnerableIOSApp.app

Now open Hopper and select the option File → Read Executable To Disassemble.

http://damnvulnerableiosapp.com/

Give the Binary from the application folder that we just exported. The application binary will be inside
the .app folder.

Hopper will start disassembling the binary and produce an output like this...

In the left side under Label, search for “jailbreak”. We can see the method we are concerned with in the
search results (highlighted)

You can also see the CFG and Pseudo code for this method by tapping on CFG and Pseudo code
respectively. You can find the CFG and Pseudo code for this method in the same folder.

By looking at the Pseudo code, we can clearly figure out that a lot of tests are being carried out in order
to detect whether the device is jailbroken or not. For e.g, it is clear from this section of pseudo-code
that the path for the Cydia application is being checked. If the Cydia application is found to be
installed, then we can be sure that the device is jailbroken.

From the CFG as shown below, we can also see that a number of checks are happening for jailbreak. If
you have a little bit of knowledge on how jailbreak detection works, you will know that no single test
can be sufficient to detect a jailbroken device, and hence multiple checks are happening in this method,
but if even one test returns a positive result (device is jailbroken) then we can be sure that the device is
jailbroken. If on the other hand a test returns a negative result (device is not jailbroken) then it would
be wrong to assume that the device is not jailbroken by just having your conclusions on that single test.

If we look at the Pseudo-code again, we can see this section at the very bottom.

The two lines that are of interest here are

 r8 = 0x1;

 r0 = [DamnVulnerableAppUtilities showAlertForJailbreakTestIsJailbroken:r8];

So the value of the register r8 is set to 1 and then the method [DamnVulnerableAppUtilities
showAlertForJailbreakTestIsJailbroken:r8] is called with the argument r8 as 1. It looks like this
method takes a boolean parameter and shows the alert for jailbreak depending on that boolean value.
Since the argument here is 1, we can assume that the flow will go to this section (with label
loc_159d4) only if it has been decided that the device is jailbroken. Since our task is to show an alert
which states that the device is not jailbroken, we can do the following things.

a) Make the flow go to this section of code by calling a branch instruction from anywhere in the code.
From the CFG, we can see that the label for the section of code where we want the flow to reach is
0x159d4

b) Set the value of r8 to 0 instead of 1 before it is passed to the method jailbreakTestTapped as an
argument.

Let's go to Hopper and in the disassembly for the method we are concerned with (jailbreakTestTapped),
click on any instruction from the beginning (make sure the flow reaches this instruction) and go to
Modify → Assemble Instruction. Then we write a branch instruction to our section of code, the
instruction will be b 0x159d4 where b stands for the branch instruction in ARM assembly.

Then let's head over to the particular section of code with the label 0x159d4 in the disassembly and
look for the section of code where the value 1 is being moved to the register r8.

And modify this instruction to instead pass 0 to the r8 register.

After the change, this is how the disassembly will look like.

Ok, so our binary has now been modified. Save it and overwrite the previous executable.

Now create a folder named Payload, put the DamnVulnerableIOSApp.app file under it (note that it will
have the new binary now), compress that folder (it will be initially named as Payload.zip) and name it

DamnVulnerableIOSApp.ipa .

Sftp to your device and upload this ipa file.

Now ssh into your device and install the DVIA application using the command line utility installipa.
Make sure that you have the utility AppSync already installed on your jailbroken device or this
installation might fail.

Now if you go to the Binary patching section in the app and tap on Check For Jailbreak, we can see
that the check fails even though we are running the application on a jailbroken device.

